製造業

  • 漸層玻璃瓶瑕疵檢測

    漸層玻璃瓶皆經過噴砂製程霧面處理,製作過程常見的瑕疵類型為色澤不均或者瓶身出現黑點,而這些瑕疵因無法明確定義且樣式不固定,難以採用AOI方法進行檢測。訓練完成的AI模型即可快速檢出玻璃瓶身各角度之瑕疵分布,並標註出缺陷位置。

  • 高爾夫球桿頭品質檢測解決方案

    高爾夫球桿頭是球具組合中最重要的部份,消費者十分重視桿頭完成面的細緻程度。運用SolVision AI影像技術,將影像樣本中高爾夫球桿頭上的細微瑕疵逐一標註,藉以訓練AI模型,訓練完成後的AI模型即能不受商標、紋路及金屬光澤的影響,定位並標註所有細微的表面瑕疵。

  • 安規認證標章印刷瑕疵檢測

    國內外安規認證的標章眾多,例如CE、EAC等,各有不同的標章圖示。過多的版面資訊在大量印刷過程中不易檢出多印或漏印的情形,可能影響商品的販售及使用。應用SolVision AI影像工具,訓練AI模型。訓練完成的AI模型即會自動檢出並標示所有差異地方,即為版面的印刷瑕疵。

  • Close-up Photography of a Power Tool

    金屬加工沖壓件表面瑕疵檢測解決方案

    金屬加工沖壓件上可能出現的瑕疵種類繁多且形態不一,油汙及水漬更是不易觀察。另一方面,金屬加工件在取像時的亮度也各有差異,造成AOI瑕疵檢測的執行相當不易。金屬加工品的品管助手:AI瑕疵檢測,經訓練的AI模型可輕易檢出各式沖壓件上的瑕疵,大幅提升產品的表面品質。

  • multicolored electronic part

    電源供應器內部線材組接解決方案

    電源供應器內部元件及線路多元且複雜,檢測接點時容易受到背景干擾而影響視覺判斷。額外使用人工及AOI傳統光學檢測皆不易執行,難以於產線端有效管控產品品質。經訓練的AI模型可以精準地偵測並定位線材錯接的電源供應器接線瑕疵,即時將不良品檢出。

  • Gray Round Metal Part

    電腦零組件瑕疵檢測解決方案

    硬碟支架製造過程出現的瑕疵種類繁多,包括金屬的壓傷、表面白霧、孔批麟、孔黑等等,透過人工檢測不容易逐一檢出,然而微小的缺陷在組裝過程可能造成孔隙無法對齊等問題發生。使用SolVision工具AI學習瑕疵特徵後,能夠快速檢測出硬碟金屬支架上的各類微小瑕疵。

  • A Man Fixing a Laptop

    筆電組裝零件缺漏與瑕疵檢測

    筆電產品零件進入組合與包裝程序後,利用人工方式進行配套零件的裝配,在執行上下裝殼與垂直螺絲組裝等工序時,若有零件缺漏將直接影響最終產品品質,進入各通路販售後有損公司名譽。導入所羅門SolVision檢測提高產品良率及穩定性,能持續優化其檢測效力,有效提高產品的品質良率。

  • AI檢測螺絲紋面瑕疵

    有螺紋的金屬套件,容易因搬運造成工件碰撞受傷,或在加工過程中留下刀痕,即使搭配強光與顯微設備,以人眼檢測不易,容易發生誤檢與漏檢。使用SolVisionl非監督式檢測工具,可學習刀痕與碰撞瑕疵的特徵,在AI訓練完成後便可輕易檢測出人眼不易辨識的瑕疵,挑出瑕疵物件,讓出貨品質更好。

  • 空調冷凍風管端點銲接品質管控方案

    空調及冷凍設備的製造過程中,熱交換器的密閉容器所含的鐵管、鏡板、管帽、端板等部件皆需經過銲接工序,但由於銲接工廠屬高溫高熱的場域,入內需穿著基本防護,且銲道的瑕疵缺陷複雜且不規則,憑藉人工經驗檢測銲道,不容易維持品質一致,導入AI自動化檢測勢在必行。