瑕疵检测

  • 半导体晶片封装制程接着剂瑕疵检测解决方案

    固晶接着剂透明,易造成光源折射影响特征判断,且爬胶、溢胶不具固定位置及型态,无法创建规则执行传统光学检测AOI。运用Solomon SolVision AI影像平台技术建立AI学习模块,自动学习并侦测爬胶、溢胶的特征及位置。增加多项正确类别提升辨识强度,有效降低环境因素的干扰。

  • black and white labeled box

    自动化导线架品质检测

    导线架表面的各类瑕疵,包含边缘毛边、黑点杂质、刮痕等。若使用传统的AOI检测,当检测背景与瑕疵较为相近时,容易发生漏检的情形。使用SolVision AI瑕疵检测工具进行学习,以扩增功能增加AI学习范围,能有效检测出各类导线架瑕疵,在杂乱或复杂背景中,也能精确辨识有很好的辨识效果。

  • 组装电路板(PCBA)制程优化解决方案

    PCBA上面集成了不同功能的电子组件、插槽及各种芯片组,制造流程繁琐,如何提升PCBA插件及组装的正确率,是良率提升的关键。SolVision AI瑕疵检测系统,学习多张PCBA的影像做AI训练,可辨检测细微瑕疵,使PCBA制成优化,效率大幅提升。

  • various colored yarn bobbins

    纱线瑕疵检测的最佳解决方案

    保有生产效益的同时兼顾纱线质量,是纺织业者最大挑战。现今纱场依以人工检测为主,漏检率高且工时长,不利实际质量要求,传统AOI面对不固定瑕疵时亦难以检测,误判率高。使用SolVision工具使AI学习辨识瑕疵特征,快速且精准地找出各项缺陷,有效改善检测速率、成品良率并降低品检负担。

  • green bottle lot

    玻璃酒瓶霉斑脏污检测方案

    为落实环保,酒商皆启动玻璃瓶容器回收再利用的机制。但玻璃酒瓶内缘之霉斑脏污,即使经过清洗消毒仍然容易残留,人眼不易看出霉斑。SolVision以酒瓶影像训练AI,学习霉斑脏污的位置与颜色,自动辨识霉斑脏污特征,在清洗产在线快速找出有霉斑、脏污的酒瓶汰除,让回收再利用酒瓶维持质量。

  • 空调冷冻风管端点焊接品质管控方案

    空调及冷冻设备的制造过程中,热交换器的密闭容器所含的铁管、镜板、管帽、端板等部件皆需经过焊接工序,但由于焊接工厂属高温高热的场域,入内需穿着基本防护,且焊道的瑕疵缺陷复杂且不规则,凭借人工经验检测焊道,不容易维持质量一致,导入AI自动化检测势在必行。

  • 积层陶瓷电容制程优化解决方案

    SMD电容体积较小,观察缺陷需在显微镜等级的微观工具下观察,且因MLCC非常脆弱,检测过程也须非常小心,困难度极高。使用SolVision工具,学习电极上凸出部分的瑕疵形状及位置,建立AI模型,在AI学习瑕疵特征之后,即可快速检测电容凸出部分的缺陷,大幅提升整体制程的良率。

  • 芯片承载盘检测解决方案

    芯片承载盘是半导体加工制程的关键要素,芯片承载盘的轮廓与定位孔点常因作业造成瑕疵,过去多透过AOI光学检测方式予以检查。然而承载盘不易透过AOI检出并定位瑕疵,严重影响良率及生产效率。运用SolVision AI影像技术执行缺陷检测,以利使用者实时监测并排除承载盘异常。

  • 缎带品质AI检测解决方案

    缎带色彩缤纷的特性使得AOI检测容易因为花纹和颜色变化而发生瑕疵漏检或误判。使用SolVision检测各种颜色、花纹的缎带,能够精确找出裂孔、脱丝等瑕疵的位置、大小及形状,不论是检测速度或是精准度都能达到标准。而透过记录与分析瑕疵的样态,可回溯找出制作过程中的问题所在,改善产品制程。