瑕疵检测

  • 3 pairs of ankle socks on a white background

    袜品外观缺陷检测

    袜品瑕疵形态多样,传统AOI适合用于整块布疋的检测,对于不固定的瑕疵检测有困难,且容易发生错杀,仍需人工进行复检。以SolVision工具完成AI模型的训练。可快速且精确地找出瑕疵、分类不同瑕疵并剔除不良品,把关产品质量、提升生产效率,透过对瑕疵进行分类与分析,更能够优化整体制程。

  • 快速精準辨識多種橡膠射出成型之瑕疵

    精准辨识多种橡胶射出成型瑕疵

    橡胶射出成形采用AOI检测塑料缺陷时,由于瑕疵种类及位置多变,易遇橡胶射出瑕疵样品不足使得瑕疵定性定量困难,检测精准度不足。利用SolVision AI瑕疵检测,针对橡胶射出成品瑕疵形状与颜色建立数据库,AI学习可后辨识种类及位置多变的瑕疵。有效解决橡胶射出成品瑕疵不固定的检测问题。

  • brown cookies on white ceramic plate

    食品加工产线输送带瑕疵检测解决方案

    食品加工业首重食品卫生及食用安全,油炸食品的外观不一。传统的食品外观检测透过大量人力执行,效率不彰。所罗门结合机器视觉与人工智能,运用Solomon SolVision AI影像平台技术执行缺陷检测。在快速且大量生产的油炸食品加工产线中,辨识多种不同的瑕疵样态,进而将不良品实时检出。

  • 金属外壳瑕疵检测与分类解决方案

    利用SolVision的瑕疵检测工具,做出AI模型Training,针对瑕疵的形状长相建立瑕疵缺陷数据库,将复杂的缺陷人工检测转化成精准度高且规律的检测系统,以深度学习辨识异常并忽略可接受的微小缺陷,有效提升检测精准度及速率,兼顾产品严格的质量要求。

  • a close-up of a machine

    自动化激光焊接分类暨检测解决方案

    雷射焊接具有不同的焊缝特征。由于产品的焊接位置、样式不尽相同,无法透过传统光学检测辨别焊缝样态,常造成焊接质量不一的情形。应用Solomon SolVision能够以焊缝特征影像训练AI模型,辨识焊接功率及漏焊瑕疵,并可透过深度学习,精准侦测焊缝的鱼鳞纹数量及分布。

  • SMT制程的回焊短路检测解决方案

    SMT制程回焊过程中,过多锡膏量或是印刷偏移可能导致锡球间短路,过去以人工方式检测,效率不彰。SMT多余锡膏在高温下的流动型态无法预测,难以传统AOI检出。运用SolVision AI技术,将SMT制程影像样本中的回焊短路瑕疵定位并标注,训练AI模型。可轻易检出锡球间短路情形。

  • 塑胶扣具瑕疵检测解决方案

    射出成型的扣具生产上最为常见的瑕疵为脱模剂油污、白点、毛边及残屑,其中属油污瑕疵最难检出。结合SolVision AI影像平台工具,分别针对各类表面瑕疵型态执行深度学习,训练完成的AI模型即可实时检出射出成型时产生油污与在内的各类瑕疵。

  • BGA Soldering Inspection Using SolVision

    球柵阵列封装假焊瑕疵检测解决方案

    运用SolVision AI影像平台的Instance 实例切割技术,将X光影像中锡球重迭的假焊瑕疵予以标注并藉以执行AI模型的深度学习。经训练后的AI即可在具背景噪声、无明显影像边缘的条件下,将假焊瑕疵精准检出。

  • 饮品包装印刷讯息品质检测及溯源讯息存留解决方案

    运用SolVision AI影像平台的Instance 实例切割技术,以包装良品及具各种瑕疵类型的影像样本训练AI模型。训练完成的模型可实时且迅速地辨识每一反光或透明泡壳的包装及填充情形,并将侦测到的瑕疵予以标注并分类。